Hà Nội
23°C / 22-25°C

BS Phạm Nguyên Quý: Vì sao trí tuệ nhân tạo vẫn phải 'đau đầu' khi 'động tới' bệnh ung thư?

Thứ năm, 15:49 01/10/2020 | Sống khỏe

Dù học máy đang có rất nhiều hứa hẹn, nó cũng đang phải đối mặt với những thử thách nhất định, đặc biệt là trong chẩn đoán ung thư giai đoạn sớm - rất sớm.

Công bố về học máy tăng cấp số nhân trên PubMed

Trí tuệ nhân tạo là một nhánh của khoa học máy tính cố gắng thực hiện các nhiệm vụ thường đòi hỏi trí thông minh của con người. Một nhánh con chính của lĩnh vực này là Machine Learning (hay "học máy"), trong đó máy tính học cách thực hiện các nhiệm vụ bằng cách phân tích dữ liệu thay vì "chờ" hoặc "yêu cầu" hướng dẫn lập trình cụ thể từ con người.

Điều này có nghĩa là máy tính có thể tự tạo ra các thuật toán để ra quyết định của riêng chúng và công nghệ này đã chứng tỏ được sức mạnh vượt trội ở nhiều lĩnh vực như khả năng phân tích-xác định độc lập các mẫu trong hàng triệu điểm dữ liệu để đưa ra phân loại và dự đoán nhanh chóng (Hình 1 - bên dưới).

 BS Phạm Nguyên Quý: Vì sao trí tuệ nhân tạo vẫn phải đau đầu khi động tới bệnh ung thư? - Ảnh 1.

Hình 1. Trí tuệ nhân tạo đã và đang chứng tỏ sức mạnh vượt trội con người ở nhiều lĩnh vực.

Học máy cũng có nhiều tiềm năng ứng dụng hữu ích trong y khoa, nhất là trong việc nhận định bất thường và diễn giải các hình ảnh y khoa. Theo báo cáo của Thư viện Y khoa Quốc gia Hoa Kỳ, số công bố khoa học về học máy trên PubMed đã tăng mạnh theo cấp số nhân trong 20 năm qua, phản ánh sự quan tâm của toàn thế giới về lĩnh vực này (Hình 2 - bên dưới).

 BS Phạm Nguyên Quý: Vì sao trí tuệ nhân tạo vẫn phải đau đầu khi động tới bệnh ung thư? - Ảnh 2.

Hình 2. Số công bố khoa học về học máy trên PubMed đã tăng mạnh theo cấp số nhân trong 20 năm qua.

Tăng tốc độ là một lợi thế quan trọng của việc tích hợp học máy vào quá trình chăm sóc y tế. Một số thuật toán hiện nay có thể diễn giải hình ảnh cắt lớp vi tính (CT) não nhanh hơn nhiều so với các bác sĩ chẩn đoán hình ảnh, nhờ đó giúp giảm chậm trễ trong quá trình chẩn đoán bệnh cấp tính.

Việc tự động hóa các nhiệm vụ lặp đi lặp lại tẻ nhạt, như kiểm tra nhiều hạch bạch huyết trong mẫu mô để tìm dấu hiệu di căn ung thư , cũng là một lợi ích khác.

Ngày nay, một số bệnh viện cũng đã mở rộng ứng dụng của trí tuệ nhân tạo vào những dịch vụ mà trước đây thường yêu cầu chuyên môn lâm sàng cao, như tầm soát/chẩn đoán thay đổi trên võng mạc (mắt) ở người bệnh tiểu đường. Các thuật toán mới hứa hẹn sẽ đưa ra chẩn đoán nhanh hơn và chính xác hơn so với con người, thỏa mãn kỳ vọng cải thiện chất lượng khám chữa bệnh.

Tuy nhiên, dù học máy đang có rất nhiều hứa hẹn, nó cũng đang phải đối mặt với những thử thách nhất định, đặc biệt là trong chẩn đoán ung thư giai đoạn sớm - rất sớm.

Học máy cũng "đau đầu" với ung thư!

Để lý giải điều này, chúng ta cần nhớ rằng hầu hết thuật toán học máy dùng trong y học đều được "đào tạo" bằng phương pháp gọi là học có giám sát, trong đó máy tính/siêu máy tính được "tiếp xúc" với những dữ liệu (thường là dạng hình ảnh) được "dán nhãn" bằng một tiêu chuẩn chẩn đoán bên ngoài (thường do các bác sĩ chẩn đoán trước) để "chỉ dạy" về sự thật.

Quá trình học tập có giám sát để chẩn đoán ung thư này thường xảy ra như mô tả trong Hình 3 dưới đây.

 BS Phạm Nguyên Quý: Vì sao trí tuệ nhân tạo vẫn phải đau đầu khi động tới bệnh ung thư? - Ảnh 3.

Hình 3. Sự phụ thuộc của học máy vào tiêu chuẩn bên ngoài để "học" chẩn đoán ung thư.

Bằng việc sử dụng các lam/slide mô bệnh học đã được chẩn đoán/dán nhãn trước là ung thư hay không ung thư, quá trình này bắt đầu với rất nhiều hình ảnh chi tiết đã được số hóa mà sau đó được chia thành 2 phần: phần để "huấn luyện" và phần để "kiểm tra" máy tính/thuật toán.

Sử dụng dữ liệu trong phần huấn luyện, máy tính sẽ phát triển một thuật toán tối ưu giúp phân biệt bệnh ung thư dựa trên cơ sở dữ liệu khổng lồ (ví dụ: màu sắc, hình dạng, cấu trúc, biên rìa,…) mà không cần hướng dẫn hoặc lập trình rõ ràng.

Độ chính xác và hiệu quả của thuật toán sẽ được đánh giá bằng cách sử dụng dữ liệu trong phần kiểm tra, bao gồm các hình ảnh mà máy tính chưa từng thấy trước đó. Thuật toán sau đó sẽ được tinh chỉnh với hình ảnh bổ sung (phần huấn luyện thêm) nếu cần thiết. Ở mỗi bước của quy trình, máy tính sẽ tiếp tục "học tập" bằng cách đánh giá chẩn đoán dựa trên tiêu chuẩn đánh giá độc lập từ bên ngoài.

Tuy nhiên, tiếp cận này đang gặp khó khăn vì sự phụ thuộc vào tiêu chuẩn bên ngoài trong việc huấn luyện máy, và học máy không/chưa giải quyết được vấn đề cốt lõi liên quan đến chẩn đoán ung thư, nhất là ung thư giai đoạn sớm.

Trong những thập kỷ trước đây, khi đa số ung thư thường bị/được phát hiện ở giai đoạn muộn, kèm theo nhiều triệu chứng cụ thể trên người bệnh thì các bác sĩ giải phẫu bệnh thường dễ dàng đồng ý với nhau về chẩn đoán ung thư vì có sự tương hợp lâm sàng - giải phẫu bệnh rõ nét.

Khi đó, tiêu bản bệnh phẩm cũng thường có nhiều thay đổi đặc trưng của ung thư, như sự tăng sinh bất thường và hình dạng bất thường của nhiều "tế bào lạ", kèm theo sự phá vỡ những kiến trúc nghiêm ngặt (ví dụ: xếp thứ tự lộn xộn) của mô (tập hợp các tế bào khác nhau) trong mẫu bệnh phẩm.

Tuy nhiên, với sự tiến bộ của y sinh học, quá trình chuyển đổi từ tế bào lành sang tế bào ung thư đã được mô tả rõ hơn, và người ta cũng biết rằng giữa mô LÀNH/BÌNH THƯỜNG và mô UNG THƯ còn có những tình trạng trung gian như TĂNG SẢN và LOẠN SẢN.

Như minh họa ở Hình 4 (bên dưới) về quá trình hình thành ung thư dạng rắn/đặc, tăng sản là tình trạng số tế bào tăng lên nhiều hơn mức bình thường, còn loạn sản là tình trạng tế bào có hình dạng khác đi so với bình thường. Đây là 2 giai đoạn có thể quan sát được dưới kính hiển vi nhưng không phải là ung thư. Dù hay được gọi là giai đoạn "tiền ung thư", chúng có thể chuyển thành ung thư hoặc không thành ung thư và cần thời gian theo dõi thêm mới biết được chắc chắn.

 BS Phạm Nguyên Quý: Vì sao trí tuệ nhân tạo vẫn phải đau đầu khi động tới bệnh ung thư? - Ảnh 4.

Hình 4. Minh họa quá trình những tế bào lành trở thành ung thư

Ranh giới giữa những thay đổi/tổn thương mô thầm lặng này và ung thư thật sự có thể rất mong manh trong nhiều trường hợp, và các bác sĩ giải phẫu bệnh vẫn hay bất đồng ý kiến với nhau vì thiếu tiêu chuẩn vàng để gọi tên chúng.

Việc giải thích và phán đoán bệnh lý chỉ dựa trên những quan sát tĩnh, qua việc ghi nhận sự xuất hiện của vài "tế bào lạ" hoặc "thay đổi nhẹ" kiến trúc của mô là những thử thách vì không có tiêu chuẩn gì khác để hỗ trợ việc ra quyết định. Đây cũng là "gánh nặng" cho bác sĩ giải phẫu bệnh vì trong chuyên ngành ung thư, ý kiến của họ là rất quan trọng để lên chiến lược điều trị.

Những nguy hiểm tiềm ẩn của học máy với bệnh nhân ung thư

Chẩn đoán ung thư giai đoạn sớm được tích hợp với thuật toán học máy chắc chắn sẽ được triển khai nhanh và rộng hơn so với chẩn đoán dựa trên suy luận của con người. Tuy nhiên, nhiều chuyên gia không chắc là cách làm này sẽ giúp chúng ta tới gần sự thật hơn.

Giống như sự không đồng thuận giữa các bác sĩ về hiện tượng tăng sản, thuật toán có thể không tốt hơn con người trong việc xác định thay đổi nào thật sự có ý nghĩa đối với người bệnh. Giai đoạn "tiền ung thư" là vùng xám có thể dẫn tới chẩn đoán quá mức và điều trị quá tay, mà cả học máy cũng sẽ không giải quyết được.

Ngược lại, có những lý do để lo rằng học máy sẽ làm trầm trọng thêm vấn đề về tăng sản khi ứng dụng đại trà. Khi các thiết bị được trang bị thuật toán học máy, chúng có thể đọc các lam/slide mô bệnh học trong vài giây và có thể trả kết quả nhanh hơn bất kỳ bác sĩ giải phẫu bệnh nào với chi phí rẻ hơn. Cách làm này sẽ cho phép xét nghiệm nhiều mẫu hơn và có thể khuyến khích các bác sĩ lâm sàng làm sinh thiết ở nhiều bệnh nhân hơn. Khi số lượng mẫu bệnh phẩm nhiều hơn và số bệnh nhân nhiều hơn, chẩn đoán quá mức cũng sẽ dễ xảy ra hơn.

Mặc dù tích hợp học máy có tiềm năng cải thiện hiệu suất công việc, nhiều bác sĩ sẽ không muốn mạo hiểm tự động hóa quá mức. Đó là vì đã có một số báo cáo về những lỗ hổng có thể xảy ra trong việc bảo mật dữ liệu lớn (big data) và những cuộc tấn công ác ý có thể dẫn đến phát triển thuật toán sai.

Ngoài ra, một số khác biệt về màu sắc, hình thái của tế bào xảy ra trong quá trình làm tiêu bản (nhiều nơi vẫn làm thủ công) có thể ảnh hưởng tới phán đoán của thuật toán. Vì thế, dù có dùng trí tuệ nhân tạo vẫn phải có con người kiểm soát.

 BS Phạm Nguyên Quý: Vì sao trí tuệ nhân tạo vẫn phải đau đầu khi động tới bệnh ung thư? - Ảnh 5.

Ngoài các tiếp cận mới như dạy máy tính học theo kiểu không cần "dán nhãn" (label-free learning), một cách tiếp cận an toàn và hiệu quả hơn là trả kết quả kèm biểu thị cảnh báo khi có bất đồng.

Nói cách khác, máy tính sẽ có thể được đào tạo để phân biệt 3 trạng thái: đồng thuận về chẩn đoán "là ung thư", đồng thuận về chẩn đoán là "không phải ung thư" và bất đồng về chẩn đoán. Mục "bất đồng" này chứa thông tin quan trọng về các đặc điểm thuộc vùng xám giữa ung thư và không ung thư sẽ giúp bác sĩ tập trung vào các ca khó, dành thời gian thảo luận liên ngành và đảm bảo an toàn y tế.

Như tất cả các can thiệp y khoa khác, áp dụng học máy vào chẩn đoán ung thư sẽ có một số lợi ích và một số tác hại nhất định.

Học máy có thể làm tăng tốc độ và tính nhất quán của chẩn đoán, nhưng nó cũng có thể làm…trầm trọng thêm vấn đề chẩn đoán tiền ung thư. Điều quan trọng cần suy ngẫm là liệu một chẩn đoán ung thư có cải thiện thời gian và chất lượng cuộc sống của người bệnh hay không. Đây cũng là lý do mà nhiều chuyên gia về ung thư đang kêu gọi đánh giá nghiêm túc khả năng các thuật toán nhận ra vùng xám trong chẩn đoán ung thư trước khi đem áp dụng rộng rãi. Nêu bật các vùng xám là bước quan trọng giúp đẩy mạnh nghiên cứu về sự hình thành ung thư, nhưng lợi ích cụ thể trên người bệnh cũng cần phải được cân nhắc thấu đáo.

TS.BS Phạm Nguyên Quý

Bình luận (0)
Xem thêm bình luận
Ý kiến của bạn
Chuyên gia chỉ ra: Loại thịt này ít béo, giàu dinh dưỡng, là lựa chọn thông minh cho cả nhà

Chuyên gia chỉ ra: Loại thịt này ít béo, giàu dinh dưỡng, là lựa chọn thông minh cho cả nhà

Bệnh thường gặp - 4 giờ trước

GĐXH - Theo ThS.BS Nguyễn Vũ Bình, thịt thăn là phần thịt nạc mềm, ít mỡ, chứa hàm lượng chất béo bão hòa thấp hơn nhiều phần thịt khác, đồng thời cung cấp protein chất lượng cao cùng nhiều vi chất thiết yếu. Nhờ đặc tính dễ chế biến, giữ được vị ngọt tự nhiên và hỗ trợ sức khỏe tim mạch cũng như sức khỏe tổng thể, thịt thăn được xem là lựa chọn thông minh trong thực đơn hằng ngày của mỗi gia đình.

Tập thể dục có giúp đào thải cồn nhanh hơn?

Tập thể dục có giúp đào thải cồn nhanh hơn?

Sống khỏe - 9 giờ trước

Nhiều người tin rằng chăm chỉ tập thể dục có thể bù đắp tác hại rượu bia, nhưng theo chuyên gia, vận động chỉ hỗ trợ phần nào chứ không thể “xóa sổ” cồn khỏi cơ thể.

Thực hiện gần 3.000 ca phẫu thuật trong 1 ngày Tết

Thực hiện gần 3.000 ca phẫu thuật trong 1 ngày Tết

Y tế - 12 giờ trước

Báo cáo công tác y tế dịp Tết của Bộ Y tế gửi Văn phòng Chính phủ ngày 20/2 (tức mùng 4 Tết Nguyên đán Bính Ngọ) cho biết, tình hình dịch bệnh tiếp tục được kiểm soát, công tác khám, chữa bệnh, cấp cứu được bảo đảm; không ghi nhận phản ánh thiếu thuốc, vật tư y tế phục vụ phòng bệnh và điều trị...

Sai lầm khiến mỗi lần uống rượu bia xong cơ thể mệt rã rời: Nhiều người mắc phải mà không biết

Sai lầm khiến mỗi lần uống rượu bia xong cơ thể mệt rã rời: Nhiều người mắc phải mà không biết

Sống khỏe - 12 giờ trước

GĐXH - Không ít người sau mỗi cuộc nhậu đều rơi vào trạng thái đau đầu, buồn nôn, khô miệng, mệt rã rời kéo dài đến hôm sau. Nguyên nhân không chỉ do rượu bia, mà còn đến từ những sai lầm phổ biến trong cách uống và chăm sóc cơ thể sau khi uống.

4 nguyên liệu nên thêm vào nước chanh ấm để giúp cơ thể khỏe mạnh

4 nguyên liệu nên thêm vào nước chanh ấm để giúp cơ thể khỏe mạnh

Sống khỏe - 15 giờ trước

Uống nước chanh ấm vào buổi sáng là thói quen đơn giản giúp cơ thể bổ sung nước, kích thích tiêu hóa và khởi động năng lượng cho ngày mới. Nếu kết hợp thêm một số nguyên liệu quen thuộc trong gian bếp, hiệu quả của thức uống này còn được nâng cao.

Uống rượu bia ngày Tết: Những điều ai cũng cần biết để tránh hại gan, não và tim mạch

Uống rượu bia ngày Tết: Những điều ai cũng cần biết để tránh hại gan, não và tim mạch

Sống khỏe - 16 giờ trước

GĐXH - Nếu uống không đúng cách, rượu bia có thể nhanh chóng gây tổn thương não, gan, dạ dày, tim mạch và làm tăng nguy cơ tai nạn.

Mỹ đánh giá: Đột quỵ rất 'sợ' một loại nước rẻ hơn cốc trà đá, nhiều người Việt uống mỗi ngày mà chưa biết hết lợi ích

Mỹ đánh giá: Đột quỵ rất 'sợ' một loại nước rẻ hơn cốc trà đá, nhiều người Việt uống mỗi ngày mà chưa biết hết lợi ích

Sống khỏe - 1 ngày trước

GĐXH - Hóa ra loại nước này cũng mang lại nhiều lợi ích quan trọng cho sức khỏe.

7 bệnh thường gặp sau kỳ nghỉ Tết, người Việt tuyệt đối không nên chủ quan

7 bệnh thường gặp sau kỳ nghỉ Tết, người Việt tuyệt đối không nên chủ quan

Sống khỏe - 1 ngày trước

GĐXH - Giữ gìn sức khỏe để Tết thực sự là khoảng thời gian nghỉ ngơi, thay vì trở thành "mùa cao điểm" của bệnh tật và nhập viện.

Đồ ăn thừa gây ung thư?: Sự thật không nằm ở hai chữ 'qua đêm' mà là 4 'sát thủ' giấu mặt này

Đồ ăn thừa gây ung thư?: Sự thật không nằm ở hai chữ 'qua đêm' mà là 4 'sát thủ' giấu mặt này

Sống khỏe - 1 ngày trước

GĐXH - Sau mỗi dịp Tết, câu hỏi "Đồ ăn thừa để qua đêm có ăn được không?" lại trở thành tâm điểm trên các bàn ăn. Nhiều người lo sợ độc tố, người lại sợ ung thư.

Thực phẩm rất quen thuộc trong ngày lễ Tết nhưng cần ăn đúng cách để tránh tăng cân

Thực phẩm rất quen thuộc trong ngày lễ Tết nhưng cần ăn đúng cách để tránh tăng cân

Bệnh thường gặp - 1 ngày trước

GĐXH - Giò bò là món ăn truyền thống quen thuộc trong ẩm thực Việt Nam, thường xuất hiện trên mâm cỗ ngày lễ, Tết và cả trong bữa ăn thường ngày. Tuy nhiên, theo các bác sĩ, dù có giá trị dinh dưỡng cao, giò bò vẫn cần được tiêu thụ với lượng hợp lý để tránh nguy cơ dư thừa năng lượng và tăng cân.

Top